
NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 1

23 April 1997SANS97: Cross Webserver Authentication 1

NW6: Cross Webserver Authentication

Steven M. Jones
CRASH!! Computing

smj@crash.com

Crash Computing Inc. is a small consulting firm operating in the areas of
systems and network administration, systems and application programming,
information systems, and network security.

This presentation describes work that was done for a client. It will not provide
complete code examples, nor will it provide any more information about the
client than is absolutely necessary. However it will review the concepts and
mechanisms that were used to solve the problem indicated in the title of this
talk, and it would be feasible to create a working solution using the techniques
discussed herein.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 2

23 April 1997SANS97: Cross Webserver Authentication 2

Cross Webserver Authentication

Questions this presentation will answer:
– How does authentication normally work?

– What is “cross webserver authentication?”

– How was it implemented?

The organization of this presentation is roughly as follows:

1. Introduction

2. Background

3. Normal Authentication

4. More Background

5. CSA: How its done

6. Summary

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 3

23 April 1997SANS97: Cross Webserver Authentication 3

Background: The Company

• Global company with several major divisions
– Each division can get own ‘Net connection, servers

• Servers will have links to each other at many
levels

• Company initiative to share customer data
– Meaning no one was so far...

It will help to know that one of the company’s products was information, in
the form of reports and advisories. Thus many documents on the Webservers
were considered to have intrinsic value, as well as any services or applications
that were available.

Indeed the divisions could and did deploy their own ‘Net connections and
servers, as they had developed their own IT organizations in the past. Within
the division Crash assisted there was also duplication of groups within IT at
different locations around the world, including the Web group for that
division. Fortunately only one of those groups was producing a public Web
site at the time...

There was one customer database maintained by a different division, which
had started life as a mailing list for customers of that division who received
printed publications. Over time some groups within other divisions had been
allowed to use it for their customers. While it was the logical place to store
user authentication data for this project, there were many issues of control and
budget that only began to be discussed during the project discussed in this
presentation. So while everyone agreed it would be good to use this database
for Web authentication data, its unknown whether or not those issues were
ever addressed and resolved.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 4

23 April 1997SANS97: Cross Webserver Authentication 4

Background: The Customer

• Customer frequently buys products from two or
more divisions

• Customer will click interesting links and may
cross from one server to another

• Customer will be confused and irritated if this
causes another request for authentication

There were many synergy's between the information products produced by the
different divisions. It was not at all uncommon for a report from one division
to refer the reader to a particular advisory or service offered by another
division.

The ability of the Web to support a highly interactive and immediate
integration of these products was one of the reasons management viewed it as
such a crucial initiative. Thus the customer was going to be skipping between
the Webservers of different divisions sooner rather than later.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 5

23 April 1997SANS97: Cross Webserver Authentication 5

Background: Initial Requirements

• Single Sign-on for all Company Web Servers

• Support per-application authorization (permission)
systems

• Target existing server platform
– Netscape Commerce Server on SunOS 4

“Single Sign-on” in this context means that if the user would be required to
authenticate to one of the company’s Webservers, that authentication would be
valid and recognized by all of the company’s other Webservers.

Several large applications were being developed by one division’s IT
organization for internal and external deployment via the Web at this time. At
least one of them already used a permission or “entitlements” system to
determine which users had access to different parts of the application. It was
unclear how this model was going to be extended in the next release of the
application, but there was a clear desire that it still be part of the application
and not moved out of that development group.

There was some discussion of migrating the internal and external Webserver
to Solaris. In the early stages of the project this was declared an unlikely
possibility, so little effort was spent planning for cross-platform development
and testing of the solution. Given a second chance, this would not have been
dropped so readily.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 6

23 April 1997SANS97: Cross Webserver Authentication 6

Background: Initial Assumptions

• All public network connections would use SSL

• Ability to switch underlying user database later

• Stronger/weaker authentication models on per-
application basis

• Length of authentication varies per-user, per-
group, per-application

• Group membership mechanism similar to CERN
server

• All servers can connect to internal WAN

As the Web group examined this concept and the requirements from
management, there seemed to be some things that could be assumed would be
true for all applications, and some features that would greatly ease projects just
appearing on the horizon.

For instance it seemed obvious that some apps or reports would be more
sensitive than others, and therefore would require stronger authentication than
a simple username and password. In addition, the authentication data would be
vulnerable to interception unless SSL or a similar technique were used.

Since the business groups had not really begun to develop applications for
broad deployment to the external Web server it was necessary to anticipate
what mechanisms might be called for later, so that when called on they would
be able to support whatever policy was deemed necessary.

One capability that was in use on the internal Web servers was the CERN
server’s ability to support Unix-like group membership. At the time there was
no good way to implement this with the Commerce Server, so it was added to
the list of desired features.

Access to the internal WAN will of course be mediated and controlled.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 7

23 April 1997SANS97: Cross Webserver Authentication 7

How Does Authentication Work?

• Server is configured to protect area

• User/Browser requests protected page

• Server checks request for credentials

• No credentials, Server rejects request

• Browser prompts User for username/password

• Browser silently resubmits request

• Server checks credentials in request headers

• Server returns requested page to Browser

To get a feel for the protocol, try connecting to port 80 of a local web server
using Telnet. Type “GET / HTTP/1.0 ” hit Enter twice, and examine the
output. Notice that the first few lines look like the headers of a MIME mail
message.

The specification for the HTTP/1.0 protocol currently in use by most of the
Web is not an Internet standard per the IETF, but is completely documented in
RFC1945. A replacement protocol, HTTP/1.1, is being developed as an IETF
standard and has been assigned RFC2068. Both of these documents are
available from the RFC repository cited at the end of this presentation.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 8

23 April 1997SANS97: Cross Webserver Authentication 8

How Does Authentication Work?

Browser

4. Prompt
User

Webserve r

2. & 6.
Check

Credentials

1. GET /prot/index.html

3. HTTP/1.0 401 Unauthorized

5. GET /prot/index.html

7. HTTP/1.0 200 OK

At some point assume that the Webserver has been configured to protect the
document tree under the path /prot. This exchange would then occur:

1. User/Browser requests protected page.

2. Server checks request for credentials.

3. No credentials were included, Server rejects request.

4. Browser prompts User for username/password.

5. Browser silently resubmits request with credentials User supplied.

6. Server checks credentials in request headers. Assume they are valid.

7. Server returns requested page to Browser.

All common Browsers will cache the credentials a user supplies for a given
server based on the hostname. As far as I know none of them seem to properly
support storing different credentials for different parts of a given server’s
document tree.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 9

23 April 1997SANS97: Cross Webserver Authentication 9

The Headers

• HTTP messages have two parts, headers and body

• Headers are formatted per RFC822
Date: Tue, 15 Nov 1994 08:12:31 GMT

From: random@crash.com

• Some headers are special for requests & responses

• Rejections due to authentication include special
response header

WWW-Authenticate: Basic realm="WallyWorld"

• Browser resubmits request including credentials
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

HTTP/1.0 only details one authentication scheme, Basic or Basic-auth. While
the spec doesn’t preclude other methods, this is the only one widely
implemented. Basic is therefore the only method that was considered for this
project. Recent work has produced RFC2069, which seeks to introduce an
authentication scheme that will remedy some of Basic’s more obvious
shortcomings. It is likely to be incorporated into HTTP/1.1.

The WWW-Authenticate: response header indicates which authentication
mechanism the server requires for the protected object, and includes
parameters that the browser should use to obtain credentials (presumably from
the user). Common practice with Basic is that the “realm” string is used in a
dialog box that prompts the user for a username/password combination.

The Authentication: request header is a simple base64 encoding of the
username and password formatted as “username:password” The example
above decodes to “Aladdin:open sesame” The base64 encoding does nothing
to enhance the security of the protocol, but it does allow special characters to
be used in the username/password that would violate the RFC822 header
specification if they were included in the clear.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 10

23 April 1997SANS97: Cross Webserver Authentication 10

Commerce Server Configuration

• Associate protected area with additional attributes
in the default object definition:

NameTrans fn=pfx2dir from=/prot dir="/web/root/html/prot"
name="protected-html"

• In object definition specify authentication check
and how to perform it:

<Object name=“protected-html”>

AuthTrans fn=basic_auth userdb="users-1"

PathCheck fn="require-auth" realm="Gold Customer Access"
auth-type="basic"

</Object>

Here is a more complete example of the obj.conf file:
<Object name=default>

NameTrans fn=pfx2dir from=/prot dir="/web/root/html/prot" name="protected-html"

NameTrans fn=pfx2dir from=/mc-icons dir="/web/root/mc-icons"

NameTrans fn=pfx2dir from=/images dir="/web/root/images"

NameTrans fn=pfx2dir from=/cgi-bin dir="/web/root/cgi-bin" name="cgi"

NameTrans fn=document-root root="/web/root/html"

PathCheck fn=unix-uri-clean

PathCheck fn=find-pathinfo

PathCheck fn=find-index index-names="index.html,home.html,welcome.html"

ObjectType fn=type-by-extension

ObjectType fn=force-type type=text/plain

Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap

Service method=(GET|HEAD) type=magnus-internal/directory fn=index-simple

Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

AddLog fn=common-log

</Object>

<Object name=cgi>

ObjectType fn=force-type type=magnus-internal/cgi

Service fn=send-cgi

</Object>

<Object name=protected-html>

AuthTrans fn=basic_auth userdb="users-1"

PathCheck fn="require-auth" realm="Gold Customer Access" auth-type="basic"

</Object>

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 11

23 April 1997SANS97: Cross Webserver Authentication 11

What’s the fix? Sessionize it!

• Create a way to tie each request to a user account
and session record

• This session can then be detected by other servers
and they can honor the authentication

• Call it CSA: Cross Server Authentication

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 12

23 April 1997SANS97: Cross Webserver Authentication 12

Features Used In CSA

• Client-Side Storage: Cookies

• Replacement Authentication Routines

• Shared Storage for Webservers

• Protocol for internal communications

Each of these items will be covered in detail in the next few slides.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 13

23 April 1997SANS97: Cross Webserver Authentication 13

Cookies

• Cookies will link the user to a session record

• Can have cookies for different parts of the doc tree

• Browsers return them to a site in the headers of
every request
– Can match an entire DNS domain or subdomain

• Cookies can be given an expiration date

• Another flag indicates cookies should only be sent
over SSL connections

Browsers that conform to the Netscape preliminary spec for cookies will have
the following minimum capacities:

300 cookies overall

4KBytes per cookie

20 cookies per server/hostname

20 cookies per domain

When these limits are exceeded an LRU algorithm will be used to decide
which objects to delete.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 14

23 April 1997SANS97: Cross Webserver Authentication 14

Replacement Auth Routines

• The standard basic-auth only looks for a
username/password in the request headers

• CSA must check for a session cookie first, then a
username password

• CSA must be able to retrieve user and session data
from shared storage

• CSA must write session record back to shared
storage or other servers can’t validate this session

In the incredibly slim developer’s documentation that accompanied the
Commerce Server, Netscape specifies how AuthTrans functions are supposed
to return status using the REQ_NOACTION and REQ_ABORTED constants. It’s
worth noting here that the documented methods of returning from AuthTrans
functions did not work as advertised.

I tried to get answers out of tech support, but they upheld the documentation
and in my environment that just didn’t work. As I recall I had to basically
switch what the documentation said for these two return codes before it
behaved properly.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 15

23 April 1997SANS97: Cross Webserver Authentication 15

Shared Storage

• All cooperating servers must be able to share user
and session data

• Model selected was a custom daemon to manage
all central storage

• Protocol developed for communicating w/ daemon

• Daemon free to change underlying storage
mechanism later

One of the general initiatives at the company was to develop a centralized user
database for both internal and external users of the Web and other information
systems. Clearly this should at some point become the source of all user
information for CSA, hence the desirability of being able to mask the storage
mechanism used by the daemon.

Other models considered included rdist’ed flat files, direct calls to Sybase, and
unmediated server-to-server communications. Flat files shared user data
effectively, but didn’t help with session data at high hit-rates. Linking any
other vendor’s code into the Commerce Server was considered a bad idea
because of the potential for endless vendor finger-pointing. Many-to-many
connections would create a registration or configuration problem: either each
server’s configuration files would have to be updated whenever another server
came online, or there would need to be some sort of registration entity. Plus
then each server is trying to keep a local database of duplicate data… Yech.

It was decided the perils of amateur protocol design were preferable to the
alternatives.

I was able to tag the centralized user database the Global User Registry and Profile System, or GURPS (apologies to
Steve Jackson) in a few memos, but I’m not sure if it stuck after the project was delayed.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 16

23 April 1997SANS97: Cross Webserver Authentication 16

User Records

Data stored about users:

– username (index)

– authentication model (password, S/key, SecurID, etc.)

– password, encrypted with crypt(3)

– secret key/data, for stronger authentication models

– enabled/disabled flag

– cookie rotation policy

– time each authentication is valid

– record creation time

– record created by (username)

– record modification time

No effort was spent exploring stronger authentication methods in the period
covered in this presentation. The fields and data-structures theoretically
allowed for it, but that was never put to the test. For starters the method of
challenging the user for authentication credentials would have to be
reconsidered. Secondly there were no business groups asking for better
authentication. Thirdly, the group functionality had been postponed until after
the basic system had been delivered, so it would have been the next item
slated for implementation.

The length of time an authentication was good for was set on a per-user basis.
This was expected to serve as a default, in case no value were specified for a
given document being requested or group that the user was a member of. The
same intention held for the “cookie rotation policy” field.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 17

23 April 1997SANS97: Cross Webserver Authentication 17

Session Records

Data stored about sessions:

– cookie hash value (index)

– username

– time created

– created by (e.g. a Webserver name)

– browser expiration time

– time CSA considers it invalid

– rotation policy

– “session” cookie

The session cookie requires some explanation. Cookies always had expiration
times set because in early discussions it had been deemed desirable to have a
user be able to exit their browser, have lunch, start their browser, and resume
their session without re-authenticating. This meant that the browser expiration
time would have to be set for each cookie, which is the only way a browser
will store a cookie in a local file that survives across program startups.

A short while later it became apparent that it would be trivial for a malicious
user to copy this file and its associated cookie, and thereby gain unauthorized
access. Without questioning the original goal of the expiration time, it was
decided that a second cookie without an expiration time should also be used. If
the main cookie were sent without the “session” cookie it would mean that the
user might be legitimate and should be re-authenticated, perhaps using a more
friendly prompt.

So the session cookie protects against abuse of the cookie cache file, but it
also eliminates the real benefit of using it in the first place - the user can no
longer continue an authenticated session across restarts of the browser. As
soon as that was realized the session cookie and the requirement should have
been dropped, or at least reconsidered, but instead the code just grew a little
cruftier...

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 18

23 April 1997SANS97: Cross Webserver Authentication 18

Protocol

Example: The Command Block

Vers Verb Obj All

Database

Username

Cookie

M A C

The Message Authentication Code (MAC) was used for all packets exchanged
between Webservers and the CSA daemon. It was intended mostly to make it
difficult to interfere with protocol traffic over the internal WAN. The MD4
algorithm was used again, this time it was fed all packet data plus a
communications password that was known to all CSA webservers and the
daemon.

The diagram indicates the structure of a Command Block (CBlock) in the
protocol. This standard, fixed-size structure specified an action to take on a
single user or session record, all such records in a given database, or on all
such records under the daemon’s management.

In response to a CBlock, the recipient would send a Response Block (RBlock).
That RBlock, a fixed-size structure not dissimilar to the CBlock, would
indicate whether or not it was being followed with a sequence of data records.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 19

23 April 1997SANS97: Cross Webserver Authentication 19

Webserver Network Diagram
CSA Daemon

Internal WAN

Webserver Webserver

Internet

Router

Router Router

Router

The configuration and network topology for Webservers was a subject of
much debate and change during this project. Of course each division wound
up deploying very different network topologies, and almost very different
server OS platforms. In essence, they were configured the same as firewalls in
the division that commissioned the CSA work, and they were set up and
administered by the same group as handled the “real” firewalls.

The routers in this diagram are all configured to act as packet filters. The
relative merits of routers versus general purpose CPUs as firewall components
is far outside the scope of this talk; suffice it to say that the interior routers
were configured to allow a single TCP connection from the Webserver to the
host labeled, “CSA Daemon.”

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 20

23 April 1997SANS97: Cross Webserver Authentication 20

Detail: Cookies

• MD4 Message-Digest Algorithm
– Not considered strong for cryptography, but a nice fast

hashing algorithm nonetheless

• “session” cookie:
cs = MD4(username + creator + creator PID + timecreated + timeexpire +

timeinvalid)

• main cookie:
cm = MD4(username + creator + creator PID + timecreated + timeexpire +

timeinvalid + cs)

• User never has any of the session data, just a
(hopefully) unpredictable record identifier

MD4 was selected for two reasons: I remembered it was listed as being fast in
Bruce Schneier’s book Applied Cryptography, and the code was readily
available including a routine to render a printable string from the hash value.

The main cookie actually included the entire session record structure,
including the “session” hash value, but since the other fields rarely varied this
is essentially correct. The name of the main cookie was CSauth, and the other
was CSsession.

There was some desire to include more data about the client such as an IP or
Email address. However IP addresses were threatened by various proxy
schemes being discussed at the time, and Email addresses are unreliable at
best, and at worst provide a malicious user with some ability to run known
plaintext through our hashing algorithm. One assumption about the system,
and a reason for choosing a cryptographic hashing algorithm, is that it should
be made difficult for malingerers to predict cookie hash values.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 21

23 April 1997SANS97: Cross Webserver Authentication 21

Detail: Replacement Auth Routines

• Flow of check_auth:
– Check for CSauth cookie

• If found, retrieve session record from CSA Daemon

• If credentials match service request, else reject it

– Check for Username/Password
• If found, retrieve user record from CSA Daemon

• If passwords match generate session record; send cookies to
browser and session record to cache and CSA Daemon; service
request. Else reject the request

– By default, reject the request

To put it a different way, here’s some pseudo-code:

int check_auth(pblock *pb, Session *sn, Request *rq)

{

 /* 1. See if they have a valid pair of cookies */

 if (check_cookie(pb, sn, rq) == 0)

 return REQ_PROCEED; /* They check out */

 /* 2. Check to see if they've included a username/password */

 if (check_decode_creds(pb, sn, rq)!= 0)

 return REQ_NOACTION; /* no Authorization: header */

 else

 if (check_user(pb, sn, rq, &urec) != 0)

 return REQ_NOACTION; /* user/pass didn’t match record */

 /* 3. Passwords matched, generate a new session record */

 srec = session_create(pblock_findval("user", pb), urec.cookie_cycle,

 (now + urec.authlifetime), (now + urec.authlifetime),

 now, creator);

 /* 4. Generate hash to send in browser cookie */

 hash(cookie, (char *)srec, sizeof(SessionRec));

 /* 5. Send new session record to CSA Daemon and store it in local cache */

 store_cookie(cookie, srec, pb, sn, rq);

 /* 6. Set response headers and return */

 set_response_headers(cookie, srec, pb, sn, rq);

 return REQ_PROCEED;

}

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 22

23 April 1997SANS97: Cross Webserver Authentication 22

Detail: Replacement Auth Routines

Check fo r CSau th
c o o k i e

Yes

Re t r i eve Sess ion
R e c o r d

No
Check fo r

u s e r n a m e / p a s s w d

Yes

No
R e j e c t R e q u e s t

"401 Unauthor ized"

Ret r ieve User
R e c o r d

U s e r R e q u e s t s
D o c u m e n t

Credent ia ls Match?

Yes

Se rv i ce Reques t
" 2 0 0 O K "

R e j e c t R e q u e s t
"401 Unauthor ized"

No

All right I got a little carried away with the drawing package. But in the rather
unlikely event that it could make something clearer, here’s the amateur
flowchart version.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 23

23 April 1997SANS97: Cross Webserver Authentication 23

CSA Server Configuration

• Define protected area:
NameTrans fn=pfx2dir from=/prot dir="/web/root/html/prot"

name="protected-html"

• Define authentication method:
<Object name=“protected-html”>

AuthTrans fn=check_auth server=“srv2.crash.com” port=9231
pw=“snurffle” db="users-1"

PathCheck fn="require-auth" realm="Gold Customer Access"
auth-type="basic"

</Object>

Here is an almost-complete example of the obj.conf file:
<Object name=default>

NameTrans fn=pfx2dir from=/prot dir="/web/root/html/prot" name="protected-html"

NameTrans fn=pfx2dir from=/cgi-bin dir="/web/root/cgi-bin" name="cgi"

NameTrans fn=document-root root="/web/root/html"

PathCheck fn=unix-uri-clean

PathCheck fn=find-pathinfo

ObjectType fn=type-by-extension

ObjectType fn=force-type type=text/plain

Service method=(GET|HEAD) type=magnus-internal/directory fn=index-simple

Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

AddLog fn=common-log

</Object>

<Object name=“protected-html”>

AuthTrans fn=check_auth server=“srv2.crash.com” port=9231 pw=“snurffle”
db="users-1"

PathCheck fn="require-auth" realm="Gold Customer Access" auth-type="basic"

</Object>

And from the end of the magnus.conf file:
Init fn=load-modules shlib=/web/root/lib/webauth_mod.so
funcs="cache_init,check_auth,check_cookie,check_user,check_decode_creds,hash,se
ssion_create"

Init fn=cache_init cachetime=5 cachefile=/web/root/tmp/cookie_cache

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 24

23 April 1997SANS97: Cross Webserver Authentication 24

CSA At Work, Part I

Webserver A

CSA Daemon

Webserver B

Browser

1

2

3

4

5

6

7

8

9

Here’s a typical Authenticated Web session using CSA. Assume that the
Webservers have been configured to protect every page in their document
trees using CSA:

1. User generates normal HTTP request by opening a URL or bookmark.

2. Webserver A examines the request for credentials - first cookies, then
username and password. It finds none, so it rejects the request.

3. Browser prompts the user for a username/password and resubmits.

4. Webserver A examines the request for credentials - first cookies, then
username and password. It finds a username/password combination, so it
requests that user record from the CSA Daemon.

5. The CSA Daemon returns the appropriate user record.

6. Webserver A encrypts the password it received with the request and
compares it to the one in the user record. Assuming that it matches, Webserver
A now generates a session record and cookies for this session.

7. Webserver A stores the session record in a local cache and sends a copy to
the CSA Daemon.

8. The auth routines setup special response headers, and the request is serviced
normally with data returned to the browser.

9. The browser records the cookie data to submit with future requests.

User now browses around Webserver A for a while.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 25

23 April 1997SANS97: Cross Webserver Authentication 25

CSA At Work, Part II

Webse rve r A

C S A D a e m o n

Webse rve r B

B r o w s e r

10

11

12

13

Now let’s see what happens when the user follows a link on Webserver A that
takes them to a document on Webserver B. Assume that the user has not
authenticated to Webserver B recently.

10. Browser submits a normal GET request. Since Webserver B is in the same
DNS domain as Webserver A, the cookie that A set in the browser is sent to B
in the request headers.

11. Webserver B examines the request for credentials - first cookies, then
username and password. It finds a cookie, so it requests the corresponding
session record from the CSA Daemon.

12. CSA Daemon returns the record.

13. Webserver B compares the “session” cookie it received in the request
headers with that in the session record. If they do not match, an error is logged
and the request is denied. If they do match, the session record is written to a
local cache and the request is serviced normally.

User now browses around Webserver B without interference.

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 26

23 April 1997SANS97: Cross Webserver Authentication 26

Summary 1

How does authentication normally work?

• Basic authentication method

• Request/Response headers

• Commerce Server configuration

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 27

23 April 1997SANS97: Cross Webserver Authentication 27

Summary 2

What is “cross webserver authentication?”

• “Single Sign-on” for the Web

• Adding some statefulness to Web sessions

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 28

23 April 1997SANS97: Cross Webserver Authentication 28

Summary 3

How was it implemented?

• Session identifiers in cookies

• Webservers cooperating and communicating

through central server

• Replacement authentication routines in Commerce

Server via NSAPI to check for cookies

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 29

23 April 1997SANS97: Cross Webserver Authentication 29

Future Work

• New implementation for Apache and mSQL
– Hope to produce a freely redistributable version

• Focus on stronger authentication methods as much
as cross-server aspects
– OPIE

– AssureNet/Digital Pathways (DES calculators)

– Perhaps integrate FWTK’s authsrv somehow

• RFC2069: Digest Access Authentication

As mentioned briefly in the note on slide 9, the digest authentication method is
being developed as a remedy to the more obvious flaws in basic-auth. The
authors describe it as a “weak access authentication method,” and it’s main
difference is that the browser computes an hash or checksum of the password
to send to the server instead of the plaintext. As the authors note, while not a
vast improvement this is certainly better than off-the-shelf Telnet and FTP…

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 30

23 April 1997SANS97: Cross Webserver Authentication 30

Additional Resources

RFCs can be found at:

http://ds.internic.net/ds/dspg1intdoc.html
ftp://ftp.internic.net/rfc

HTTP specs and other Web-related documents:
http://www.w3.org/pub/WWW

Cookies: http://www.netscape.com/newsref/std/cookie_spec.html

NetNews: comp.infosystems.www.browsers.*

comp.infosystems.www.servers.*

NW6: Cross Webserver Authentication 23 April 1997

SANS97 Baltimore, Maryland 31

23 April 1997SANS97: Cross Webserver Authentication 31

NW6: Cross Webserver Authentication

Steven M. Jones
CRASH!! Computing

Web Site: http://www.crash.com

EMail: smj@crash.com
info@crash.com

Postal Address: Crash Computing Inc.
2124 Broadway, Suite 258
New York, NY 10023

